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Abstract Time-dependent acoustic scattering problems involving “smart” obstacles are considered. When
hit by an incident acoustic field, smart obstacles react in an attempt to pursue a preassigned goal. Let IR3

be the three-dimensional real Euclidean space, and let � ⊂ IR3 be a bounded simply connected open set
with a Lipschitz boundary characterized by a constant acoustic boundary impedance χ , immersed in an
isotropic and homogeneous medium that fills IR3\�. The closure of � will be denoted as �. When hit
by an incident field, the obstacle � pursues the preassigned goal through the action of a control input
acting on its boundary (i.e., a quantity with dimensions of a pressure divided by a time). The obstacles
considered in this paper monitor the control input acting on their boundaries in order to achieve one of
the following goals: (i) be furtive in a given set of the frequency space, and (ii) appear in a given set of
the frequency space and outside a given set of IR3 containing � and �G as similar as possible to a “ghost”
obstacle �G having boundary acoustic impedance χG. It is assumed that � ∩ �G = ∅ and �G �= ∅. The
problem corresponding to the first goal will be called the definite-band furtivity problem, and the prob-
lem corresponding to the second goal will be called the definite-band ghost-obstacle problem. These two
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goals define two classes of smart obstacles. In this paper, these problems are modeled as optimal-control
problems for the wave equation introducing a control input acting on the boundary of � for time t ∈ IR.
The cost functionals proposed depend on the value of the control input on the boundary of the obstacle
and on the value of the scattered acoustic field generated by the obstacle on the boundary in the “furtivity
case”, and on the boundary of a suitable set containing� and�G in the “ghost-obstacle case”. Under some
assumptions, the use of the Pontryagin maximum principle allows us to formulate the first-order optimality
conditions for the definite-band furtivity problem and for the definite-band ghost-obstacle problem as
exterior problems outside the obstacle for a system of two coupled wave equations. Numerical methods
to solve these exterior problems are developed by extending previous work. These methods belong to
the class of the operator-expansion methods that are highly parallelizable. Numerical experiments prov-
ing the validity of the control problems proposed as mathematical models of the definite-band furtivity
problem and definite-band ghost obstacle problem are presented. The numerical results obtained with
a parallel implementation of the numerical methods developed are discussed and their properties are
established. The speed-up factors obtained using parallel computing are really impressive. The website:
http://www.econ.univpm.it/recchioni/w11 contains animations and virtual reality applications relative to the
numerical experiments.

Keywords Acoustic obstacle scattering · Open-loop control · Operator-expansion method · Smart
obstacles

1 Introduction

When illuminated by an incoming field, smart or active obstacles react by actuating a policy in order to
pursue an assigned goal. The development and dissemination of recent innovations in sensors, electronic
chips, and actuators have made possible the realization of smart objects in many practical situations. Appli-
cations of smart objects range from cutting-edge military applications to everyday life devices such as, for
example, washing machines. The design and realization of smart objects can be improved by the availability
of satisfactory mathematical models that describe their behavior. The general mathematical model we have
in mind to describe the behavior of a smart object is an optimal-control problem involving ordinary and/or
partial differential equations. In recent papers, the authors and coworkers have studied smart obstacles in
the context of acoustic and electromagnetic scattering. In these contexts, the smart obstacles considered
circulate suitable control inputs on their boundaries in order to pursue their goals. The goal of the smart
obstacles studied is one of the following:

(1) To be undetectable (i.e., furtivity problem) [1–3].
(2) To appear with a shape and a boundary impedance different from the actual ones (i.e., masking

problem) [2–4].
(3) To appear in a location in space different from its actual one, eventually with a shape and boundary

impedance different from its actual ones (i.e., ghost obstacle problem) [5].

The optimal-control problems associated with these classes of obstacles provide a way of character-
izing and computing the control variable (i.e., pressure divided by time) as the optimal solution of the
mathematical problems considered.

A possible physical device to build an actuator for these control variables could be a set of pistons located
on the boundary of the obstacle. The pistons should act creating either a compression or a decompression
in the medium surrounding the obstacle in contact with the boundary according to the values of the control
variable. The distance traveled by the pistons should be negligible compared to the size of the obstacle,
that is, significant deformation of the boundary of the obstacle must be avoided.

In this paper, we introduce certain new classes of smart obstacles that pursue one of the previous goals
restricted to a definite band in the frequency space. For the sake of brevity, we restrict our analysis to the
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definite-band furtivity problem and to the definite-band ghost-obstacle problem in the acoustic case. These
problems are formulated as optimal-control problems for the wave equation. The acoustic definite-band
masking problem can be treated similarly. We consider the study of these problems as a preliminary to the
study of the corresponding problems in the electromagnetic case where the wave equation is replaced by
the Maxwell equations.

The definite-band problems are of great interest in practical situations. For example, they are of great
interest in the design and implementation of smart radar absorbers. Smart radar absorbers are a key ingre-
dient of several devices used in the aerospace industry. In the past, radar absorbers have been designed
using one of the following ideas to achieve the absorbing effect, including destructive inference (for exam-
ple in the so-called Salisbury screen and in the Jaumann stack), and by absorbing and converting the
incident energy into heat (for example in the Dallenbach layer). Recently, phase-switched screens have
been introduced as tools to build radar absorbers (e.g., [6–9]). When a phase-switched screen is used, the
incident energy is not absorbed but shifted in frequency, using phase modulation so that any reflected
energy falls outside the receiver bandwidth and is thus not detected. Roughly speaking, a phase-switched
screen in the terminology of this paper is a smart object that in the electromagnetic case pursues the goal
of: “definite-band furtivity”. This example shows the relevance of the definite-band furtivity problem in
the acoustic case.

Restricting the goal pursued to a definite band in the frequency space, as proposed in this paper,
modifies substantially the mathematical formulation of the problems under consideration. In fact, the
optimal-control problems used to model problems (1–3), in particular, the cost functionals that must be
minimized in order to achieve the goal over the entire frequency space, must be reconsidered in order to
model appropriately the problem formulated only on the desired band in the frequency space. The presence
of the definite band necessitates the use of suitable convolutions involving the inverse Fourier transform
of the characteristic function of the definite frequency band in the definition of the cost functional (see
formulae (8), (9)). Consequently, the first-order optimality conditions of these new optimal-control prob-
lems change substantially and cannot be deduced from those derived in [1, 4, 5] for the optimal-control
problems (1)–(3). That is, the first-order optimality conditions are not expressed by two wave equations
coupled by local boundary conditions as in [1, 4, 5], but the coupling between the two wave equations is
given by non-local (in time) boundary conditions (see Eq. (22)). As a consequence, the way of solving the
first-order optimality conditions must be changed.

1.1 Mathematical formulation of the definite-band ghost-obstacle problem

Let IR be the set of real numbers, IR3 be the three-dimensional real Euclidean space, and x = (x1, x2, x3)
T ∈

IR3 be a generic vector, where the superscript T denotes the transpose. We denote with (·, ·) the Euclidean
scalar product in IR3, and with ‖·‖ the corresponding Euclidean vector norm.

We now describe the data defining the definite-band furtivity and the definite-band ghost-obstacle prob-
lems. Let� ⊂ IR3,�G ⊂ IR3 be two bounded simply connected open sets with locally Lipschitz boundaries
∂�, ∂�G, and let � and �G be their closures, respectively. We denote with n(x) = (n1(x), n2(x), n3(x))T ∈
IR3, x ∈ ∂� the outward unit normal vector to ∂�. Since � has a locally Lipschitz boundary, n(x), x ∈ ∂�,
exists almost everywhere (see [10, Lemma 2.42, p. 88]); similar statements hold for the outward unit normal
vector to ∂�G. Furthermore, �G is such that �G �= ∅ and � ∩ �G = ∅. We assume that � and �G are
characterized by acoustic constant boundary impedances χ , χ ≥ 0, and χG, χG ≥ 0, respectively. The
case χ = +∞ and/or χG = +∞ (i.e., the case of acoustically hard obstacles) can be treated with simple
modifications of the formulae presented in this paper. We refer to (�;χ) as the obstacle, and to (�G;χG)

as the ghost obstacle. Without loss of generality, we can assume that the origin of the coordinate system
lies in �. We note that the last assumption implies that there exists a > 0 such that the closed sphere with
center at the origin and radius a is contained in�, i.e.: Ba = {x ∈ IR3 | ‖x‖ ≤ a} ⊂ �. Let K ⊂ IR be an open
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set, symmetric with respect to the origin, chosen as the band in the frequency space where the goal of the
furtivity problem or of the ghost-obstacle problem must be pursued. The assumption that K is symmetric
with respect to the origin is made to keep the exposition simple and can be easily removed. We consider an
acoustic incident wave ui(x, t), (x, t) ∈ IR3 × IR, propagating in a homogeneous isotropic medium at equi-
librium, with no source terms present, satisfying the wave equation with wave propagation velocity c > 0
in IR3 × IR. Finally, we denote with us(x, t), (x, t) ∈ (IR3 \�)× IR, and with us

G(x, t), (x, t) ∈ (IR3 \�G)× IR
the waves scattered, respectively, by the obstacle (�;χ) and by the ghost obstacle (�G;χG) when hit by
ui(x, t), (x, t) ∈ IR3 × IR.

The scattered acoustic field us(x, t), (x, t) ∈ (IR3 \ �) × IR is defined as the solution of the following
exterior problem for the wave equation (see [11]):


us(x, t)− 1
c2

∂2us

∂t2
(x, t) = 0, (x, t) ∈ (IR3\�)× IR (1)

with the boundary condition (see [12, p. 66]):

− ∂us

∂t
(x, t)+ cχ

∂us

∂n(x)
= g(x, t), (x, t) ∈ ∂�× IR, (2)

where g(x, t) is given by

g(x, t) = ∂ui

∂t
(x, t)− cχ

∂ui

∂n(x)
(x, t), (x, t) ∈ ∂�× IR, (3)

the condition at infinity

us(x, t) = O
(

1
r

)
, r → +∞, t ∈ IR, (4)

and the radiation condition
∂us

∂r
(x, t)+ 1

c
∂us

∂t
(x, t) = o

(
1
r

)
, r → +∞, t ∈ IR, (5)

where r = ‖x‖, x ∈ IR3, 
 = ∑3
i=1

∂2

∂xi2
is the Laplacian operator, c > 0 is the wave propagation velocity,

and O(·) and o(·) are the Landau symbols. We note that g(x, t), (x, t) ∈ ∂�×IRis defined almost everywhere,
and the boundary condition (2) can be adapted to deal with the limiting case of acoustically hard obstacles,
i.e., χ = +∞ (see [1, 11]). The obstacle (�;χ) that scatters the field us solution of (1), (2), (4), (5) is called
a passive obstacle. The field us

G(x, t), (x, t) ∈ (IR3 \�G) × IR scattered by the (passive) ghost obstacle is
defined as the solution of (1), (2), (4), (5) when in the problem defined above we replace� with�G and χ
with χG. Note that we always consider the ghost obstacle as a passive obstacle.

Let ω be the conjugate variable of t in the Fourier transform. We consider the following problems:

Definite-Band Furtivity Problem: Given an incoming acoustic field ui(x, t), (x, t) ∈ IR3 × IR, an obstacle
(�;χ) and an open set K ⊂ IR symmetric with respect to the origin, choose a suitable control function
acting on ∂� for t ∈ IR so that the Fourier transform with respect to time of the wave scattered by (�;χ)
when hit by the incoming acoustic field ui is “as small as possible” for ω ∈ K.

Definite-Band Ghost Obstacle Problem: Given an incoming acoustic field ui(x, t), (x, t) ∈ IR3 × IR, an obsta-
cle (�;χ), a ghost obstacle (�G;χG) and an open set K ⊂ IR symmetric with respect to the origin, choose
a suitable control function acting on ∂� for t ∈ IR so that the Fourier transform with respect to time of the
wave scattered by (�;χ) when hit by the incoming acoustic field ui appears outside a given set containing
� and�G and for ω ∈ K “as similar as possible” to the Fourier transform of the wave scattered in the same
circumstances by the ghost obstacle (�G;χG).

Note that the physical dimension of the control function is pressure divided by time.
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Obstacles that behave according to the requirements of the definite-band furtivity and of the definite-
band ghost-obstacle problems are “smart”, in the sense that they try to pursue a preassigned goal (i.e.: they
try to appear in the region K of the frequency space different from what they are). In fact, the obstacle
that hosts on its boundary the control-function solution of the definite-band furtivity problem generates a
scattered wave whose Fourier transform with respect to time is “small” when ω ∈ K. That is, the obstacle
reacts trying to be undetectable in the frequency band K. The obstacle that hosts on its boundary the
control-function solution of the definite-band ghost obstacle problem generates a scattered wave whose
Fourier transform with respect to time in the frequency band K resembles outside a given set containing
� and �G the Fourier transform with respect to time of the wave scattered by (�G;χG).

For simplicity, we now formulate the mathematical model of the definite-band ghost-obstacle problem;
later, we will show how to modify this model in order to obtain the mathematical model of the definite-band
furtivity problem.

Our goal is to model the definite-band ghost-obstacle problem as an optimal-control problem introduc-
ing a control variable ψ(x, t), (x, t) ∈ ∂�× IR acting on the boundary of the obstacle. Toward this aim, we
replace the boundary condition (2) with the following boundary condition:

− ∂us

∂t
(x, t)+ cχ

∂us

∂n(x)
= g(x, t)+ (1 + χ)ψ(x, t), (x, t) ∈ ∂�× IR. (6)

Let�ε be a bounded simply connected open set containing� and�G with Lipschitz boundary ∂�ε and
let ds∂�ε , ds∂� be the surface measures on ∂�ε and ∂� (see [10, Lemma 1.1, pp. 119–120]), respectively.
Moreover, let Ik(ω), ω ∈ IR, be the characteristic function of the set K, that is:

Ik(ω) =
{

1, ω ∈ K,
0, ω ∈ IR \ K

(7)

and let ǏK(t), t ∈ IR be its inverse Fourier transform, and CK,us,us
G

be the following function:

CK,us,us
G
(x, t) =

∫
IR

dτ ǏK(τ )(us(x, t − τ)− us
G(x, t − τ)) , (x, t) ∈ ∂�ε × IR. (8)

We note that, since K is symmetric with respect to the origin, the function ǏK is real.
We choose the following cost functional:

Fλ,µ,ε(ψ) =
∫
IR

dt
{ ∫

∂�ε

(1 + χ)λC2
K,us,us

G
(x, t)ds∂�ε +

∫
∂�

(1 + χ)µςψ2(x, t)ds∂�

}
, (9)

where λ ≥ 0, µ ≥ 0 are dimensionless constants such that λ + µ = 1, and ς is a non-zero positive dimen-
sional constant. We model the definite-band ghost-obstacle problem via the following optimal control
problem:

min
ψ∈C

Fλ,µ,ε(ψ), (10)

subject to constraints (1), (4)–(6). The set C lies the space of the admissible controls and will be defined
later. The obstacle (�;χ) that generates the scattered field us solution of (10), (1), (4)–(6) is called a smart
or active obstacle.

As shown in [1], the cases µ = 0 and µ = 1 are trivial. We choose the cost functional (9) since, when
0 < µ < 1, we have λ > 0, that is, the minimization of Fλ,µ,ε reduces the difference between the Fourier
transform of the wave us scattered by the smart obstacle (�;χ) and the Fourier transform of the wave
us

G scattered by the ghost (�G;χG) on the surface ∂�ε when ω ∈ K. As a consequence of this difference
remaining small in IR3 \�ε , an observer located in IR3 \�ε in the frequency band K observes a scattered
field generated by the smart obstacle that resembles the scattered field generated by the ghost, that is, the
observer located in IR3 \ �ε that observes the scattered field in the frequency band K is made to believe
that the obstacle generating the scattered field is indeed the ghost obstacle. Moreover, due to the second
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addendum in (9), minimizing Fλ,µ,ε when 0 < µ < 1 means also minimizing the “magnitude” of the control
function ψ employed. From now on, we restrict our attention to the case 0 < µ < 1.

We say that a functional associated with the boundary condition (6) is “local” when it depends only
on the values on the boundary of � of the “state variables” us(x, t), (x, t) ∈ ∂� × IR and of the “control
variables” ψ(x, t), (x, t) ∈ ∂� × IR. Note that the functional Fλ,µ,ε given in (9) is “non-local” with respect
to the state variables since it depends on the values of us(x, t), (x, t) ∈ ∂�ε × IR and that the functionals
considered previously in the furtivity and in the masking problems in [1], [4] seem to be “local” in the
previous sense. Hence, one of the difficulties of the model (10), (1), (4)–(6) is the “non-local” character
of the functional given in (9). Note that the terminology “local” has been used previously in a slightly
different sense. We reconsider more accurately the issue of “locality” later on.

We overcome this difficulty by making the following assumptions: let (r, θ ,φ) be the usual spherical
polar coordinate system in IR3 with center in the origin, let B = B1 be a sphere with center in the origin
and unit radius, and let ∂B be its boundary; we assume that:

(a) The boundary of the obstacle � is a star-like surface with respect to the origin, that is, � and ∂� can
be represented as follows:

� = {x = rx̂ ∈ IR3 | 0 ≤ r < ξ(x̂), x̂ ∈ ∂B}, (11)

∂� = {x = rx̂ ∈ IR3 | r = ξ(x̂), x̂ ∈ ∂B}, (12)

where ξ(x̂) > 0, x̂ ∈ ∂B, is a single-valued function defined on ∂B that is assumed sufficiently regular
for the manipulations that follow.

(b) The sets �ε and ∂�ε can be represented as follows:

�ε = {x = rx̂ ∈ IR3 |0 ≤ r < (ξ(x̂)+ ε), x̂ ∈ ∂B}, ε > 0, (13)

∂�ε = {x = rx̂ ∈ IR3 | r = ξ(x̂)+ ε, x̂ ∈ ∂B}, ε > 0. (14)

Assumptions (a) and (b) are only two of many other possible choices made to guarantee the satisfactory
solution of the model (10), (1), (4)–(6). This choice is made just to fix ideas and to keep the exposition
simple.

Under assumptions (a) and (b), applying the Pontryagin maximum principle, we find that the optimal
state trajectory ũs, and the corresponding adjoint-variable trajectory ϕ̃ satisfy the necessary first-order
optimality conditions associated to the optimal-control problem (1), (4)–(6), (10). That is, they are the
solutions of the following exterior problem for a system of two coupled wave equations:


ũs(x, t)− 1
c2

∂2ũs

∂t2
(x, t) = 0, (x, t) ∈ (IR3 \�)× IR, (15)

ũs(x, t) = O
(

1
r

)
, r → +∞, t ∈ IR, (16)

∂ũs

∂r
(x, t)+ 1

c
∂ũs

∂t
(x, t)=o

(
1
r

)
, r →+∞, t ∈ IR, (17)

− ∂ũs

∂t
(x, t)+cχ

∂ũs

∂n(x)
(x)=g(x, t)− (1+χ)

2µς
ϕ̃(x, t), (x, t) ∈ ∂�× IR, (18)


ϕ̃(x, t)− 1
c2

∂2ϕ̃

∂t2
(x, t) = 0, (x, t) ∈ (IR3 \�)× IR, (19)

ϕ̃(x, t) = O
(

1
r

)
, r → +∞, t ∈ IR, (20)
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∂ϕ̃

∂r
(x, t)− 1

c
∂ϕ̃

∂t
(x, t) = o

(
1
r

)
, r → +∞, t ∈ IR, (21)

− ∂ϕ̃

∂t
(x, t)− cχ

∂ϕ̃

∂n(x)
(x) = −2λ(1 + χ)fε

(
x

‖x‖
)

×
∫
IR

dτ Ǐk(τ )

(
ũs

(
x + ε

x
‖x‖ , t − τ

)

−us
G

(
x+ε x

‖x‖ , t−τ
))

, (x, t) ∈ ∂�×IR, (22)

lim
t→−∞ ũs(x, t) = 0, x ∈ IR3 \�, (23)

lim
t→+∞ ϕ̃(x, t) = 0, x ∈ IR3 \�, (24)

where fε(x/‖x‖), x ∈ ∂� is the function defined by

fε

(
x

‖x‖
)

= fε(x̂(θ ,φ)) = vε(θ ,φ)
v(θ ,φ)

, x ∈ ∂�, x̂ = x
‖x‖ ∈ ∂B, 0 ≤ θ ≤ π , 0 ≤ φ < 2π , (25)

with

v(θ ,φ) = ξ

√(
∂ξ

∂θ

)2

sin2 θ +
(
∂ξ

∂φ

)2

+ ξ2 sin2 θ , 0 ≤ θ ≤ π , 0 ≤ φ < 2π , (26)

vε(θ ,φ) = (ξ + ε)

√(
∂ξ

∂θ

)2

sin2 θ+
(
∂ξ

∂φ

)2

+(ξ+ε)2 sin2 θ , 0 ≤ θ ≤ π , 0 ≤ φ < 2π . (27)

The relation between ϕ̃ and the optimal-control solution of problem (1), (4–6), (10), ψ̃ is

ψ̃(x, t) = − 1
2µς

ϕ̃(x, t), (x, t) ∈ ∂�× IR. (28)

For future convenience, we point out that

ds∂�=v(θ ,φ)dθ dφ, 0≤θ≤π , 0≤φ < 2π , (29)

and

ds∂�ε =vε(θ ,φ)dθ dφ, 0 ≤ θ ≤ π , 0 ≤ φ < 2π . (30)

In order to guarantee conditions (23) and (24), we must choose the incident wave in a suitable class
of functions, as will be done in Section 2. Furthermore, the boundary conditions (18) and (22) can be
slightly adapted to deal with the limiting case χ = +∞. Finally, we emphasize that using the terminology
introduced before, the boundary condition (22) given on ∂� has a “non-local” character since it depends
on the values of the function ũs on the surface ∂�ε . Moreover, condition (22) at time t depends on the
values of ũs(x, τ) with τ ∈ IR. Indeed, the dependence of the boundary conditions (18), (22) on the values
of ũs for x /∈ ∂� is also contained in the normal derivative ∂· /∂n that appears in (18) and (22). That
“non-locality” of the boundary conditions (18) and (22) is not a specific characteristic of the definite-band
ghost-obstacle problem, and it was already present through the term involving the normal derivative in
the furtivity and masking problems considered in [1, 4] while the “non-locality” of the functional Fλ,µ,ε
given in (9) is a specific characteristic of the definite-band ghost problem and also the dependence of (22)
at time t on the values ũs(x, τ) with τ ∈ IR seems to be a specific non-local characteristic of definite-band
problems. That is, the “non-locality” appears in the definite-band problems in a new form. Later, we will
see that the assumptions made make it possible to reduce the solution of (15)–(24) to the solution of a
family of boundary-value problems for two coupled Helmholtz equations depending on a real parameter.
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The definite-band furtivity problem can be modelled as the control problem (1), (4)–(6), (10) when we
replace �ε with �, us

G with zero (that is when �G = ∅), and, as a consequence, fε with one. Furthermore,
the necessary first-order optimality conditions associated with the optimal control problem (1), (4–6), (10)
associated with the definite-band furtivity problem are given by the zero-order term in ε for ε → 0+ in
Eqs. (15)–(24), replacing us

G with zero in Eq. (22).
The furtivity problem and the ghost-obstacle problem studied in [1–5] can be considered as particular

cases of the corresponding definite-band problems. The furtivity problem, studied in [1] can be interpreted
as an “infinite” band furtivity problem; in fact, the furtivity problem of [1] amounts to making the wave
scattered by the obstacle as small as possible in the entire frequency space (i.e., corresponds to the choice
K = IR). In [1], a mathematical formulation of the furtivity problem as a control problem is given, and the
functional cost proposed is, roughly speaking, a particular case of the cost functional (9) when we choose
K = IR, �G = ∅, fε(x/‖x‖) = 1, x/‖x‖ ∈ ∂B and we replace �ε with � and us

G with zero.
Recall that when we pass from an “infinite” band to a “definite” band, the cost functional and, as a

consequence, the corresponding first-order optimality conditions, change substantially. One could ask the
reason for restricting the furtivity effect on a definite-band K when the smart obstacle can be made furtive
on the entire band (i.e., K = IR) of the frequency space. The answer lies in the fact that we expect that
achieving the goal of the furtivity problem (i.e., the choice K = IR) should be more “expensive” in terms
of the control function employed than achieving the same goal in the definite-band problem (i.e.: the
choice K ⊂ IR). A norm of the optimal-control function ψ will be used to measure how expensive it is to
achieve a given goal. The same can be said for the ghost-obstacle problem. We will show in Section 4 for
some test problems that, when we solve the furtivity problem or the ghost-obstacle problem, we “spend”
more in terms of the control function ψ acting on the boundary of the obstacle than when we solve the
definite-band furtivity problem or the definite-band ghost-obstacle problem, respectively. Furthermore,
we will show that the “size” of the control function employed to pursue the goal proposed on the set K
“increases” when the “size” of the set K increases. We should also mention that definite-band problems
are more realistic; in fact, in many applications smart objects pursue their goals only on a definite band in
the frequency space; for examples see [6–9].

The mathematical formulation of the definite-band ghost-obstacle problem as the optimal control prob-
lem (1), (4–6), (10) and the successive reduction under the hypotheses (a) and (b) of problem (1), (4–6),
(10) to the solution of the exterior problem (15)–(24) provide us with a practical tool for solving the
definite-band ghost-obstacle problem. A similar statement holds for the definite-band furtivity problem.

1.2 A brief discussion on the numerical solution of the optimal-control problem for the definite-band
ghost-obstacle problem

The most common numerical methods for solving a control problem such as (1), (4)–(6), (10) involve the
iterative solution of the scattering problem (1), (4)–(6). These approaches are time-consuming and not
always practical in real situations. We avoid this iterative approach thanks to the use of the Pontryagin
maximum principle (see [13, Chapter 9], [14, Chapter 3], [15, Chapter 6] for a survey of optimal-control
problems for partial differential equations). In fact, thanks to the assumptions made when applying the
Pontryagin maximum principle, we can formulate the first-order optimality conditions for the definite-band
ghost-obstacle problem as the exterior problem (15)–(24) for two coupled wave equations, that is, we can
solve the optimal-control problem (1), (4)–(6), (10) approximately at the computational cost needed to
solve the exterior problem (1), (2), (4), (5). This is a relevant advantage in many practical situations, as
emphasized also in [1–4]. The exterior problem (15)–(24) can be solved with several well-known methods
used for the numerical solution of partial differential equations, such as, finite-difference or finite-element
methods, integral-equation methods, and so on. However, since the solution of systems of coupled partial
differential equations such as (15)–(24) is computationally expensive, the use of a solver with high parallel
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performance is desirable. For this purpose, we have developed a numerical method based on the so-called
“operator expansion method” as proposed in [1, 11]. The “operator-expansion method” was introduced by
Milder [16] and, in its many versions, has been widely used to solve problems in acoustics and electromag-
netics (see for example [1–5, 11], [16]–[24]). In this paper, we reformulate the “operator-expansion method”
in order to provide a highly parallelizable method to solve the exterior problem (15)–(24) for ε > 0, that
is, to solve the definite-band ghost-obstacle problem and to solve the definite-band furtivity problem that
is to solve the exterior problem (15)–(24) when ε = 0, fε = 1 and when we replace us

G with zero in Eq. 22.
We note that the optimal-control problems formulated in this paper are solved as open-loop control

problems due to the condition imposed when t → +∞. It is known that their solution through the equations
that correspond to the first-order optimality conditions is not a robust approach to the control problem.
Indeed, the mathematical formulation of the furtivity problem as a closed-loop control problem can be
studied, and an infinite-dimensional Riccati equation that solves the problem can be derived. The solu-
tion of this equation appears more expensive computationally than the solution of the exterior problem
(15)–(24), since, to the best of our knowledge, there are no ad hoc solvers for these Riccati equations.
However, the main reason to justify the use of the open-loop formulation is that, in the practical situations
that we have in mind where the mathematical model proposed here can be used, the incoming signal to
consider is a sequence of identical acoustic impulses. The problem of making an obstacle smart when hit
by a sequence of acoustic impulses is a problem substantially made up of many independent identical
problems, that is, one problem for each impulse, wherein the obstacle does not interact with an impulse
before and after the impact of that impulse on the obstacle. So that, in this case, the control function that
must act on the boundary of the obstacle can be computed when the obstacle is hit by the first impulse
and then repeated when the successive impulses reach the obstacle, that is, the obstacle is made smart
with respect to the impact of the first impulse and its behavior remains “smart” in the future repeating the
optimal pressure current computed due to the special form of the incoming acoustic field. The absence of
smart behavior when the first impulse interacts with the obstacle may be tolerated since, due to the pres-
ence of noise, only repeated detection is considered reliable in most detection devices. Furthermore, the
open-loop approach leads to the first-order optimality conditions (15)–(24) that can be efficiently solved
via the modified version of the operator-expansion method proposed in Section 3 that gives useful results
when used in some test cases.

An intermediate approach that could be used here between the open- and closed-loop approach is the
receding-horizon control of linear infinite-dimensional systems (see for example [25–27]). This approach
approximates the optimal infinite-horizon control with a finite-horizon suboptimal control, where the hori-
zon goes from the current time to the current time plus a fixed horizon length and, in the most naive
implementation, the state variable is constrained at the final time. The receding-horizon implementation
is typically formulated by introducing an open-loop optimization problem. Several formulations of the
receding time horizon have been studied in order to guarantee stability and to avoid equality constraints
on the state variable at the final time since the treatment of this last type of constraints is computationally
demanding (see [25–27]).

We are not pursuing this approach for two reasons. First, as discussed previously, the particular fea-
tures of the control problems considered (i.e., the incoming signal composed of a sequence of identical
impulses) make satisfactory the use of the open-loop approach to determine the optimal solution. Second,
as emphasized in [25], the receding-horizon control of nonlinear systems is an efficient approach when
we can solve sequentially open-loop fixed-horizon optimal-control problems at low computational cost,
and this does not apply to our case. In fact, even using the order-reduction method to approximate the
partial differential equations with finite-dimensional dynamical systems (see, for example, [28, 29]) to solve
the sequence of open-loop finite-horizon problems coming from the receding-horizon approach, we have
that the computational effort required to solve the optimal control problem (1), (4)–(6), (10) using the
finite horizon method will be prohibitive compared to the computational effort required by the method
suggested in this paper. Moreover, only a suboptimal solution is obtained using the finite-horizon method.
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In fact, due to the particular incoming signal and to the assumptions made on the scatterer, the solution
method suggested in this paper can reduce the solution of the optimal control problem (1), (4–6), (10) to
the solution of a few hundreds diagonal systems of linear equations in a few hundreds unknowns. In fact,
we reduce the control problem via the use of the Pontryagin maximum principle and some other suitable
assumptions to a system of partial differential equations for the state variable us and the adjoint variable
ϕ. This system of partial differential equations, owing to its particular form, is very well suited to be solved
with the so-called “operator-expansion method” (see [1, 4, 11]). The “operator-expansion method” under
suitable assumption on ui allows us to represent ui itself, the state variable (i.e., the scattered field) and
the adjoint variable (see formulae (51–53)) as a superposition of 30–40 really significant time-harmonic
waves. Hence, thanks to the formulae (51–54), we reduce the time-dependent equations (15)–(22) to a set
of Helmholtz equations with suitable boundary conditions, that is, Eqs. (55)–(58) and then via assumptions
(e2) and formulae (64), (65), (94), (95) we reduce the solution of Eqs. (55)–(58) to the solution of the
integral equations (83), (84) defined on the boundary of the sphere B1 that can be solved with very small
computational effort owing to the use of the operator-expansion method. Roughly speaking, using the
spherical-harmonics basis to solve the boundary-value problems we can reduce the computation to the
solution of 30–150 diagonal linear systems involving about 300 unknowns, each dependent on the order
of the expansion used in the “operator-expansion method”. Hence, the use of some other order-reduction
techniques, such as those proposed in [28, 29] is not justified. The operator-expansion method in the form
presented here is an ad hoc solver that cannot solve the generic scattering problem. In conclusion, the use
of the receding-horizon approach to control problems and of the order-reduction method to approximate
partial differential equations is not justified when we consider simple scattering problems like the ones
considered here, although it may be justified or even necessary if more difficult problems are considered.

The main restriction of the approach proposed in this paper is that the shape of the obstacles must be
not far from spherical. This limitation is intrinsic with the operator-expansion proposed in [1, 11], since
the time-dependent scattering problem is reduced to a set of integral equations defined on a sphere. Only
recently in the study of the standard scattering problems this limitation has been overcome by new ver-
sions of the operator-expansion method [30]. However, the extension of the expansion discussed in [30] to
optimal-control problems is beyond the scope of this paper.

In the following, we focus our attention on the solution of the definite-band ghost-obstacle problem
and, where necessary, underline how the analysis must be modified to deal with the definite-band furtivity
problem.

1.3 Outline of the paper

In Section 2, we derive the first-order optimality conditions of the control problem (1), (4)–(6), (10) that is,
Eqs. (15)–(24). In Section 3, we give a brief description of the modified versions of “operator-expansion”
method needed to solve the exterior problem (15)–(24), and point out the differences with the versions
of the “operator-expansion method” proposed in [1, 4, 11]. In Section 4, we validate the mathematical
model and the numerical methods proposed for solving some test problems. Impressive speed-up factors
are obtained by running a parallel implementation of the numerical methods developed. Some animations
and virtual-reality applications relative to the numerical experiments proposed in Section 4 can be found
in the website: http://www.econ.univpm.it/recchioni/w11. In Section 5 several conclusions will
be drawn.

2 The first-order optimality conditions for the definite-band ghost-obstacle problem

We study the optimal-control problem (1), (4)–(6), (10). For simplicity, we consider only the case 0 < µ < 1.
Remember that the cases µ = 0, 1 are trivial, as shown in [1]. In order to apply the Pontryagin maximum
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principle to (1), (4)–(6), (10) we reduce the integral on ∂�ε to an integral on ∂� using assumptions (a) and
(b) of Section 1. In fact, from assumptions (a) and (b) and formulae (25), (29), (30), we have:

ds∂�ε

(
x + ε

x
‖x‖

)
= fε

(
x

‖x‖
)

ds∂�(x), x ∈ ∂�, (31)

and the cost functional (9) can be rewritten as:

Fλ,µ,ε(ψ) =
∫
IR

dt
∫
∂�

(1 + χ)

{
λC2

K,us,us
G

(
x + ε

x
‖x‖ , t

)
fε

(
x

‖x‖
)

+ µςψ2(x, t)
}

ds∂�(x). (32)

Because of Eq. (32), we can proceed to the application of the Pontryagin maximum principle as in
[1, Section 2].

Let us introduce the vector space C of admissible controls and some other useful function spaces. Let
us denote by us|∂�, ϕ|∂�, us|∂�ε and ϕ|∂�ε the restrictions of us and ϕ to ∂� and to ∂�ε , respectively, and
let L∞(∂�) be the space of real functions defined on ∂� essentially bounded on ∂� (with respect to ds∂�);
similarly, we can define L∞(∂�ε), ε > 0. Let L2(∂� × IR) be the usual space of real functions defined on
∂� × IR, square integrable with respect to the measures ds∂�dt. Similarly, we can define L2(∂�ε × IR),
ε > 0. We define the following spaces of functions:

C =
{

F : (IR3 \�)× IR → IR such that : F |∂�×IR,
∂F
∂n

|∂�×IR,
∂F
∂t

|∂�×IR ∈L2(∂�×IR),

F satisfies equations (1), (4) and the following condition at infinity:

∂F
∂r
(x, t)− 1

c
∂F
∂t
(x, t) = o

(
1
r

)
, r → +∞, t ∈ IR

}
, (33)

U =
{

F : (IR3 \�)× IR → IR such that : F |∂�×IR,
∂F
∂n

|∂�×IR,
∂F
∂t

|∂�×IR ∈ L2(∂�× IR) ,

F |∂�ε×IR ∈ L2(∂�ε × IR), ε > 0 , F satisfies Eqs. (1), (4) and the following condition at infinity:

∂F
∂r
(x, t)+ 1

c
∂F
∂t
(x, t) = o

(
1
r

)
, r → +∞, t ∈ IR

}
, (34)

and

C =
{

f ∈ L2(∂�× IR), f (x, t) ∈ L∞(∂�), t ∈ IR, moreover there exists

F ∈ C such that F|∂�×IR = f and lim
t→+∞ F(x, t) = 0, x ∈ IR3 \�

}
, (35)

U =
{

f ∈ L2(∂�× IR), f (x, t) ∈ L∞(∂�), t ∈ IR, moreover there exists

F ∈ U such that F|∂�×IR = f and lim
t→−∞ F(x, t) = 0, x ∈ IR3 \�

}
. (36)

Note that the set C defined in (35) is the space of admissible controls. From (32) it follows that the optimal
control problem (1), (4)–(6), (10) can be associated with the following Hamiltonian (see [13, p. 35], [31,
p. 19]):

H(us,ψ ,ϕ, t) = −(1 + χ)

∫
∂�

ds∂�(x)
{
λfε

(
x

‖x‖
)

C2
K,us,us

G

(
x + ε

x
‖x‖ , t

)
+ µςψ2(x, t)

}

+
∫
∂�

ds∂�(x)
{
ϕ(x, t)

[
cχ
∂us

∂n
(x, t)−(1+ χ)ψ(x, t)− g(x, t)

]}
, us ∈ U, ϕ ∈ C, t ∈ IR.

(37)
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In the Hamiltonian (37), the second adjoint variable, that is, the one that should appear inside the first
integral in (37), has been set to −1. This is a legitimate choice as explained in [1, Section 2]. Furthermore,
the Hamiltonian (37) can deal with the limit case χ = +∞ with minor modifications.

The functional derivatives δH/δϕ, δH/δus, are defined by the following equations:

H(us,ψ ,ϕ + δϕ,ϕ0, t)− H(us,ψ ,ϕ,ϕ0, t) =
∫
∂�

ds∂�
δH
δϕ
δϕ + ε1(δϕ), δϕ ∈ C, t ∈ IR, (38)

H(us + δus,ψ ,ϕ,ϕ0, t)− H(us,ψ ,ϕ,ϕ0, t) =
∫
∂�

ds∂�
δH
δus δu

s + ε2(δus), δus ∈ U, t ∈ IR, (39)

where ε1(δϕ) = o(δϕ) when δϕ goes to zero and ε2(δus) = o(δus) when δus goes to zero. Note that δH/δϕ
must be independent of δϕ and that δH/δus must be independent of δus.

We note that, when for x ∈ ∂�, the incoming wave packet goes to zero when t → −∞ we have that,
for any ψ ∈ C, the corresponding scattered wave us(x, t) solution of problem (1), (4)–(6) satisfies the con-
dition limt→−∞ us(x, t) = 0, x ∈ IR3 \ �. Applying the Pontryagin maximum principle to the Hamiltonian
given in (37) (see [13, Theorem 1, p. 36] or [31, Theorem 1, p. 20], [1, p. 559]) we find that the following
conditions must be satisfied by the optimal control ψ̃ , the corresponding optimal state trajectory ũs and
the corresponding adjoint variable ϕ̃:

∂ũs

∂t
(x, t) =

(
δH
δϕ

)
(ũs, ψ̃ , ϕ̃, x, t), (x, t) ∈ ∂�× IR, (40)

∂ϕ̃

∂t
(x, t) = −

(
δH
δus

)
(ũs, ψ̃ , ϕ̃, x, t), (x, t) ∈ ∂�× IR, (41)

H(ũs, ψ̃ , ϕ̃, t) ≥ H(ũs,ψ , ϕ̃, t), ψ ∈ C, t ∈ IR, (42)

together with the following “transversality condition”:

lim
t→+∞ ϕ̃(x, t) = 0, x ∈ ∂�. (43)

In the remainder of this section, we extend the notation, in fact when v ∈ C or v ∈ U, we continue to
denote with v the function F belonging, respectively, to C or U , such that F|∂�×IR = v.

Now, we show that the first-order optimality conditions associated with the control problem (1), (4–6),
(10) with 0 < µ < 1 are given by (15)–(24). Note that the adjoint variable ϕ̃ is chosen as a function defined
on (IR3 \�)× IR satisfying some equations (i.e., (19)–(21)) and that the trace of ϕ̃ on ∂�× IR is still denoted
by ϕ̃.

We start by showing the relation between the optimal control ψ̃ of problem (1), (4)–(6), (10) and the
adjoint variable ϕ̃. We have

H(ũs, ψ̃ , ϕ̃, t) = max
ψ∈C

H(ũs,ψ , ϕ̃, t), t ∈ IR, (44)

that is,

H(ũs, ψ̃ , ϕ̃, t) =
∫
∂�

ds∂�(x)
{
−(1 + χ)λ fε

(
x

‖x‖
)

C2
K,us,us

G
(x, t)+ ϕ̃(x, t)

[
cχ
∂ũs

∂n
(x, t)−g(x, t)

]}

+ max
ψ∈C

{∫
∂�

ds∂�(x)
[
−(1 + χ)µςψ2(x, t) − ϕ̃(x, t)(1 + χ)ψ(x, t)

]}
, t ∈ IR. (45)

Imposing the necessary first-order optimality condition, i.e., δH
δψ
(ũs, ψ̃ , ϕ̃, t) = 0, we obtain

∫
∂�

ds∂�(x)
[
−2(1 + χ)µςψ̃(x, t)− (1 + χ)ϕ̃(x, t)

]
δψ(x, t) = 0, δψ ∈ C, t ∈ IR, (46)
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that is, Eq. (28). Let ϕ̃ ∈ C and δũs ∈ U, as proved in [1, pp. 560–561] we have∫
∂�

ds∂�(x)
(
ϕ̃
∂

∂n
δũs

)
(x, t) =

∫
∂�

ds∂�(x)
(
δũs ∂ϕ̃

∂n

)
(x, t), t ∈ IR. (47)

Owing to Eq. (47), we can compute the functional derivatives δH/δϕ, δH/δus defined in (38), (39), respec-
tively. From (38), since δũs ∈ U and ϕ̃ ∈ C, they have extensions in (IR3\�) × IR that satisfy the wave
equation and belong to U and C, respectively; we have

H(ũs, ψ̃ , ϕ̃ + δϕ̃, t)− H(ũs, ψ̃ , ϕ̃, t) =∫
∂�

ds∂�(x)δϕ̃(x, t)
(

cχ
∂ũs

∂n
(x, t)−(1 + χ)ψ̃(x, t)− g(x, t)

)
+ ε1(δϕ̃), δϕ̃ ∈ C , t ∈ IR, (48)

where ε1(δϕ̃) = o(δϕ̃), when δϕ̃ goes to zero, that is, imposing (40), (42) we have the boundary condition
(18). Furthermore, using Eq. (8) and Plancherel’s theorem (see [32, Plancherel’s Theorem pp. 153]) we
have:

H(ũs + δũs, ψ̃ , ϕ̃, t)− H(ũs, ψ̃ , ϕ̃, t) =
∫
∂�

ds∂�(x) ·
(
−2(1 + χ)fε

(
x

‖x‖
)
λ

∫
IR

ds ǏK(s)
(

ũs
(

x+ε x
‖x‖ , t−s

)
− us

G

(
x+ε x

‖x‖ , t−s
))
δũs(x, t)

+ ϕ̃(x, t)cχ
∂

∂n
(δũs)(x, t)

)
+ ε2(δũs), δũs ∈ U, t ∈ IR, (49)

where ε2(δũs) = o(δũs) when δũs goes to zero. Using Eqs. (39) and (47), from (49) we obtain

δH
δus (ũ

s, ψ̃ , ϕ̃, t) = −2(1 + χ)fε

(
x

‖x‖
)
λ

(∫
IR

ds ǏK (s)
(

ũs
(

x + ε
x

‖x‖ , t − s
)

− us
G

(
x + ε

x
‖x‖ , t − s

)))

+ cχ
∂ϕ̃

∂n
(x, t), (x, t) ∈ ∂�× IR, (50)

that is, imposing (41) we have the boundary condition (22).

3 The operator-expansion method for the definite-band ghost-obstacle problem

The operator-expansion method in the version used here is based on three assumptions that we call (e1),
(e2), (e3). Note that the assumptions (e1), (e2), (e3) that we adopt are only one set among many other
possible choices that make possible the development of the operator-expansion method.

The first assumption, (e1), is necessary to reduce the solution of the exterior problem for two coupled
wave Eqs. (15)–(24) to the solution of a set of exterior problems for two coupled Helmholtz equations
depending on one parameter.

That is, (e1) assumes that the incident wave ui, the wave ũs scattered by the obstacle (�;χ), and the
adjoint variable ϕ̃ solutions of the exterior problem (15)–(24) can be approximated by a superposition of
time-harmonic waves,

ui(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je−iωiteiωi(x,αj)/c

]
, (x, t) ∈ IR3 × IR, (51)

ũs(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je−iωitus

ωi,αj
(x)

]
, (x, t) ∈ (IR3\�)× IR, (52)



398 J Eng Math (2006) 56:385–413

ϕ̃(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je−iωitϕωi,αj

(x)
]

, (x, t) ∈ (IR3\�)× IR, (53)

where i is the imaginary unit, N1, N2 are positive integers, ai,j, ωi, i = 1, 2, . . . , N1, j = 1, 2, . . . , N2 are suit-
able constants and αj ∈ ∂B, j = 1, 2, . . . , N2 are suitable elements of ∂B. In Section 4, the choice of ωi, ai,j
and αj will be made depending on the incident wave. In order to formulate the operator-expansion method
for the definite-band ghost-obstacle problem, we need the extra assumption that the wave scattered by the
ghost-obstacle (�G,χG) can be also approximated, as done in formula (52),

us
G(x, t) ≈

N1∑
i=1

N2∑
j=1

[
ai,je−iωitus

G,ωi,αj
(x)

]
, (x, t) ∈ (IR3\�G)× IR. (54)

Let WN1,N2 = {ω1,ω2, . . . ,ωN1} × {α1,α2, . . . ,αN2
}. Substituting formulae (51)–(54) in Eqs. (15)–(24),

we obtain the following N1 ·N2 exterior problems for a system of two Helmholtz equations; that is, for
(ω,α) ∈ WN1,N2 we must solve:(


us
ω,α + ω2

c2 us
ω,α

)
(x) = 0, x ∈ IR3\�, (55)

(

ϕω,α + ω2

c2 ϕω,α

)
(x) = 0, x ∈ IR3\�, (56)

iωus
ω,α(x)+ cχ

∂us
ω,α

∂n(x)
(x)+ (1 + χ)

2µς
ϕω,α(x) = bω,α(x), x ∈ ∂�, (57)

iωϕω,α(x)−cχ
∂ϕω,α

∂n(x)
(x)+2λ(1+χ)fε

(
x

‖x‖
)

Ik(ω)

(
us
ω,α

(
x+ε x

‖x‖
)

−us
G,ω,α

(
x+ε x

‖x‖
))

=0, x∈∂�,

(58)

where IK is given in formula (7) and bω,α is given by

bω,α(x) = −iωei ωc (x,α) (1 + χ
(
n(x),α

))
, x ∈ ∂�,

(59)

with the following conditions at infinity:

∂us
ω,α(x)

∂r
− i
ω

c
us
ω,α(x) = o

(
1
r

)
, r → +∞, (60)

∂ϕω,α(x)

∂r
+ i
ω

c
ϕω,α(x) = o

(
1
r

)
, r → +∞. (61)

We note that bω,α(x), x ∈ ∂� is defined almost everywhere in x ∈ ∂�, that us
G,ω,α is defined on ∂� since we

have ∂� ∩�G = ∅, and that formula (58) derives from the following formula:

ǏK(t) ∗ ei z t =
∫

IR
dτ ǏK(τ )ei z(t−τ) = IK(z)ei z t, z ∈ IR, t ∈ IR, (62)

where an asterisk denotes the convolution product. The boundary conditions (57), (58) must be slightly
modified when χ = +∞ (see [1, Section 1]).

We recall that, with a suitable choice of the incident wave packet and space of the admissible control
functions, the “initial” condition (23) and the “final” condition (24) will be automatically satisfied.

The second assumption, (e2), is necessary to solve the exterior problem (55)–(61) with a perturbation
method. We note that when the obstacle � and the set �ε are two concentric spheres, in particular when
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� = B, that is, when ξ(x̂) is identically equal to 1 (see (12)), the solution of problem (55)–(61) is given by an
explicit series of spherical harmonics (see [33, Eq. (2.48), p. 33]). Let�+ ω

c
,�− ω

c
be the free-space Green’s

functions of the Helmholtz operator satisfying the “radiation” conditions (60) and (61), respectively, that
is:

�± ω
c
(x, y) = e±i ωc ‖x−y‖

4π‖x − y‖ , x, y ∈ IR3, x �= y. (63)

The assumption (e2) requires:

(e2,1) There exists a, 0 < a < 1 such that Ba ⊂ � and the functions us
ω,α and ϕω,α , (ω,α) ∈ WN1,N2 , solutions

of problem (55)–(61), can be extended from IR3 \� to IR3 \ Ba remaining solutions of the Helmholtz
equations (55), (56) in IR3 \ Ba, respectively;

(e2,2) For (ω,α) ∈ WN1,N2 , the extensions to IR3 \ Ba of us
ω,α , ϕω,α , that we denote with Uω,α , Vω,α , respec-

tively, can be represented as single-layer potentials,

Uω,α(x) = a2
∫
∂B
�+ ω

c
(x, aŷ)ũω,α(ŷ)ds∂B(ŷ), x ∈ IR3 \ Ba, (64)

Vω,α(x) = a2
∫
∂B
�− ω

c
(x, aŷ)ṽω,α(ŷ)ds∂B(ŷ), x ∈ IR3 \ Ba, (65)

for a suitable choice of the density functions ũω,α(ŷ) and ṽω,α(ŷ), ŷ ∈ ∂B;

(e2,3) Assumption (a) of Section 1.1.

It is easy to see that, for any choice of the density functions ũω,α , ṽω,α , that makes formulae (64), (65) differ-
entiable under the integral sign, the functions Uω,α , Vω,α satisfy, respectively, the Helmholtz equations
(55), (56), and the conditions at infinity (60), (61). Moreover, since Uω,α , Vω,α are the extensions of us

ω,α ,
ϕω,α , respectively, we determine the density functions ũω,α and ṽω,α , imposing the boundary conditions
(57), (58). That is, for (ω, α) ∈ WN1, N2 we obtain the density functions ũω,α and ṽω,α as the solutions of the
following system of integral equations:

iωa2
∫
∂B
�+ ω

c
(x, aŷ)ũω,α(ŷ)ds∂B(ŷ)+ cχa2 ∂

∂n(x)

∫
∂B
�+ ω

c
(x, aŷ)ũω,α(ŷ)ds∂B(ŷ)

+ (1 + χ)

2µς
a2

∫
∂B
�− ω

c
(x, aŷ)ṽω,α(ŷ)ds∂B(ŷ) = bω,α(x), x = ξ(x̂)x̂ ∈ ∂�, x̂ ∈ ∂B, (66)

iωa2
∫
∂B
�− ω

c
(x, aŷ)ṽω,α(ŷ)ds∂B(ŷ)− cχa2 ∂

∂n(x)

∫
∂B
�+ ω

c
(x, aŷ)ṽω,α(ŷ)ds∂B(ŷ)

+2λ(1 + χ)IK(ω)fε

(
x

‖x‖
)

a2
∫
∂B
�+ ω

c
(x + ε

x
‖x‖ , aŷ)ũω,α(ŷ)ds∂B(ŷ)

= 2λ(1+χ)IK(ω)fε

(
x

‖x‖
)

us
G,ω,α

(
x+ε x

‖x‖
)

, x = ξ(x̂)x̂ ∈ ∂�, x̂ ∈ ∂B, (67)

where bω,α(x), x ∈ ∂� is given by (59). Since Ba ⊂ �, the Fredholm integral equations of the first kind
(66), (67) have continuous kernels defining compact operators. These equations are ill-posed; as discussed
in [1, Section 1], the ill-posedness can be removed by use of a perturbation approach.

Let (r, θ ,φ) be the canonical spherical polar coordinates of x ∈ IR3; we recall that r = ‖x‖, and write:

x̂(θ ,φ) = x
r

= (sin θ cosφ, sin θ sin φ, cos θ)T, 0 ≤ θ ≤ π , 0 ≤ φ < 2π , (68)
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x̂θ (θ ,φ) = ∂ x̂
∂θ

= (cos θ cosφ, cos θ sin φ, − sin θ)T, 0 ≤ θ ≤ π , 0 ≤ φ < 2π , (69)

x̂φ(θ ,φ) = ∂ x̂
∂φ

= (− sin θ sin φ, sin θ cosφ, 0)T, 0 ≤ θ ≤ π , 0 ≤ φ < 2π . (70)

Furthermore, let us consider ξ as an independent variable so that we can use the notation O((ξ − 1)s),
s ≥ 0 when ξ → 1. Working as in [11, Section 1, pp. 1830–1831], we derive the following expansions for
the outward normal vector n(x), x ∈ ∂� and for the free-space Green functions of the Helmholtz operator
�± ω

c
,

n(ξ(x̂)x̂) = x̂ + x̂θ

+∞∑
s=1

µs,θ (x̂)+ x̂φ

+∞∑
s=1

µs,φ(x̂), x̂ ∈ ∂B, (71)

∂ ·
∂n(ξ(x̂)x̂)

= ∂·
∂r

+
(+∞∑

s=0

µs,θ (x̂)

)
∂·
∂θ

+
(+∞∑

s=0

µs,φ(x̂)

)
∂·
∂φ

, x̂ ∈ ∂B, (72)

�± ω
c
(‖x‖x̂, y) =

+∞∑
s=0

(‖x‖ − 1)s

s!
∂s�± ω

c
(x̂, y)

∂rs , ‖x‖ > a, x̂ ∈ ∂B, y ∈ ∂Ba, (73)

where 0! = 1 and µs,θ = O((ξ − 1)s), µs,φ = O((ξ − 1)s), s ≥ 0, when ξ → 1 (see [11, Section 1, pp.
1830–1831]). From formulae (43), (44), (48–51) of [11] we have

µ0,θ (x̂(θ ,φ)) = µ0,φ(x̂(θ ,φ)) = 0, 0 ≤ θ ≤ π , 0 ≤ φ < 2π ,

µ1,θ (x̂(θ ,φ)) = − ∂

∂θ
ξ(x̂(θ ,φ)), 0 ≤ θ ≤ π , 0 ≤ φ < 2π , (74)

µ1,φ(x̂(θ ,φ)) = − 1

sin2 θ

∂

∂φ
ξ(x̂(θ ,φ)), 0 ≤ θ ≤ π , 0 ≤ φ < 2π .

We note that, by using the Cauchy product rule to multiply the series and formulae (72) and (73), we
can derive the series expansion in powers of (ξ − 1) of ∂�±ω/c/∂n. Series (71) and (72) converge when
|ξ − 1| < 1; series (73) converges when x̂ ∈ ∂B and y ∈ ∂Ba since 0 < a < 1 and Ba ⊂ �. Finally, let us
assume that, for (ω,α) ∈ WN1,N2 , the following series expansions in powers of (ξ − 1) hold for the density
functions ũω,α , ṽω,α and for the function fε given in (25),

ũω,α(x̂) =
+∞∑
s=0

(ξ(x̂)− 1)s

s! ũs,ω,α(x̂), x̂ ∈ ∂B, (75)

ṽω,α(x̂) =
+∞∑
s=0

(ξ(x̂)− 1)s

s! ṽs,ω,α(x̂), x̂ ∈ ∂B, (76)

fε(x̂) =
+∞∑
s=0

fε,s(x̂), x̂ ∈ ∂B, (77)

where fε, s = O((ξ − 1)s), s ≥ 0; in particular, when ξ → 1, we have:

fε,0(x̂) = (1 + ε)2, x̂ ∈ ∂B, (78)

fε,1(x̂) = 2ε(ε + 1)(ξ(x̂)− 1), x̂ ∈ ∂B, (79)

fε,2(x̂) = (1 + (ε + 1)(3ε − 1))(ξ(x̂)− 1)2 + 0·5(1 − (ε + 1)2)×
{(

∂ξ

∂θ
(x̂)

)2

+ 1

sin2 θ

(
∂ξ

∂φ
(x̂)

)2
}

, x̂ ∈ ∂B.

(80)
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We note that formulae (73), (75), (76) imply the following expansions for Uω,α and Vω,α ,

Uω,α(‖x‖x̂) = a2
+∞∑
s=0

s∑
ν=0

(‖x‖ − 1)s−ν

(s − ν)!
∫
∂B

∂s−ν�+ ω
c

∂rs−ν (x̂, aŷ)ũν,ω,αds∂B(ŷ), ‖x‖ > a, x̂ ∈ ∂B, (81)

and

Vω,α(‖x‖x̂) = a2
+∞∑
s=0

s∑
ν=0

(‖x‖ − 1)s−ν

(s − ν)!
∫
∂B

∂s−ν�− ω
c

∂rs−ν (x̂, aŷ)ṽν,ω,αds∂B(ŷ), ‖x‖ > a, x̂ ∈ ∂B. (82)

Substituting (81), (82) in (66), (67) we obtain the following set of integral equations defined on ∂B for the
densities ũs,ω,α , ṽs,ω,α , (ω,α) ∈ WN1,N2 , s = 0, 1, . . .,

iωa2
∫
∂B
�+ ω

c
(x̂, aŷ)ũs,ω,α(ŷ)ds∂B(ŷ)+ cχa2

∫
∂B

∂�+ ω
c

∂r
(x̂, aŷ)ũs,ω,α(ŷ)ds∂B(ŷ)

+ (1 + χ)

2µς
a2

∫
∂B
�− ω

c
(x̂, aŷ)ṽs,ω,α(ŷ)ds∂B(ŷ) = zs,ω,α(x̂), x̂ ∈ ∂B, (ω,α) ∈ WN1,N2 , s = 0, 1, . . . , (83)

iωa2
∫
∂B
�− ω

c
(x̂, aŷ)ṽs,ω,α(ŷ)ds∂B(ŷ)− cχa2

∫
∂B

∂�+ ω
c

∂r
(x, aŷ)ṽs,ω,α(ŷ)ds∂B(ŷ)

+2λ(1 + χ)IK(ω)fε,0(x̂)a2
∫
∂B
�+ ω

c
((1 + ε)x̂, aŷ)ũs,ω,α(ŷ)ds∂B(ŷ) = z∗

s,ω,α(x̂),

x = ξ(x̂)x̂ ∈ ∂�, x̂∈∂B, (ω,α)∈WN1,N2 , s=0, 1, . . . , (84)

where

z0,ω,α(x̂) = bω,α(ξ(x̂)x̂), x̂ ∈ ∂B, (ω,α) ∈ WN1,N2 , (85)

z∗
0,ω,α(x̂) = 2λ(1 + χ)IK(ω)fε(x̂)us

G,ω,α(ξ(x̂)x̂ + εx̂), x̂ ∈ ∂B, (ω,α) ∈ WN1,N2 , (86)

and

zs,ω,α(x̂) = −iωa2
s−1∑
ν=0

(ξ(x̂)− 1)s−ν

(s − ν)!
∫
∂B

ds∂B(ŷ)
∂s−ν�+ ω

c

∂rs−ν (x̂, aŷ)
(ξ(ŷ)− 1)ν

ν! ũν,ω,α(ŷ)

−cχa2
s−1∑
ν=0

(ξ(x̂)− 1)s−ν

(s − ν)!
∫
∂B

ds∂B(ŷ)
∂s−ν+1�+ ω

c

∂rs−ν+1
(x̂, aŷ)

(ξ(ŷ)− 1)ν

ν! ũν,ω,α(ŷ)

−cχa2
s−1∑
ν=0

ν∑
p=0

µs−ν,θ (x̂)
(ξ(x̂)− 1)ν−p

(ν − p)!
∫
∂B

ds∂B(ŷ)
∂s−ν+1�+ ω

c

∂rs−ν∂θ
(x̂, aŷ)

(ξ(ŷ)− 1)p

p! ũp,ω,α(ŷ)

−cχa2
s−1∑
ν=0

ν∑
p=0

µs−ν,φ(x̂)
(ξ(x̂)− 1)ν−p

(ν − p)!
∫
∂B

ds∂B(ŷ)
∂s−ν+1�+ ω

c

∂rs−ν∂φ
(x̂, aŷ)

(ξ(ŷ)− 1)p

p! ũp,ω,α(ŷ)

− (1 + χ)

2µς
a2

s−1∑
ν=0

(ξ(x̂)− 1)s−ν

(s − ν)!
∫
∂B

ds∂B(ŷ)
∂s−ν�− ω

c

∂rs−ν (x̂, aŷ)
(ξ(ŷ)− 1)ν

ν! ṽν,ω,α(ŷ),

x̂ ∈ ∂B, (ω,α) ∈ WN1,N2 , s = 1, 2, . . . , (87)

z∗
s,ω,α(x̂) = −iωa2

s−1∑
ν=0

(ξ(x̂)− 1)s−ν

(s − ν)!
∫
∂B

ds∂B(ŷ)
∂s−ν�− ω

c

∂rs−ν (x̂, aŷ)
(ξ(ŷ)− 1)ν

ν! ṽν,ω,α(ŷ)

+cχa2
s−1∑
ν=0

(ξ(x̂)− 1)s−ν

(s − ν)!
∫
∂B

ds∂B(ŷ)
∂s−ν+1�− ω

c

∂rs−ν+1
(x̂, aŷ)

(ξ(ŷ)− 1)ν

ν! ṽν,ω,α(ŷ)
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+cχa2
s−1∑
ν=0

ν∑
p=0

µs−ν,θ (x̂)
(ξ(x̂)− 1)ν−p

(ν − p)!
∫
∂B

ds∂B(ŷ)
∂s−ν+1�− ω

c

∂rs−ν∂θ
(x̂, aŷ)

(ξ(ŷ)− 1)p

p! ṽp,ω,α(ŷ)

+cχa2
s−1∑
ν=0

µs−ν,φ(x̂)
ν∑

p=0

(ξ(x̂)− 1)ν−p

(ν − p)!
∫
∂B

ds∂B(ŷ)
∂s−ν+1�− ω

c

∂rs−ν∂φ
(x̂, aŷ)

(ξ(ŷ)− 1)p

p! ṽp,ω,α(ŷ)

−2λIK(ω)(1 + χ)a2
s−1∑
ν=0

fε, s−ν(x̂)
ν∑

p=0

(ξ(x̂)− 1)ν−p

(ν − p)! .

∫
∂B

ds∂B(ŷ)
∂ν−p�+ ω

c

∂rs−ν ((1 + ε)x̂, aŷ)
(ξ(ŷ)− 1)p

p! ũp,ω,α(ŷ), x̂ ∈ ∂B, (ω,α) ∈ WN1,N2 , s = 1, 2, . . . .

(88)

We note that when χ = 0, K = IR, ε = 0 and us
G, s,ω,α(x̂) = 0, x̂ ∈ ∂B, (ω,α) ∈ WN1,N2 , s = 0, 1, . . ., formulae

(87) and (88) reduce to the formulae (88), (89) of [1]. Let Yσ , l, m(x̂), x̂ ∈ ∂B, σ = 0, 1, l = σ , σ + 1, . . .,
m = σ , σ + 1, . . . , l be the spherical harmonic functions (see [12, p. 77]) we have the following expansions
for �± ω

c
(x, y) (see [11, p. 1833]):

�+ ω
c
(x, y) = i

ω

c

1∑
σ=0

+∞∑
l=σ

l∑
m=σ

hl

(ω
c

‖x‖
)

jl
(ω

c
‖y‖

)
Yσ , l, m(x̂)Yσ , l, m(ŷ),

x=‖x‖x̂, y=‖y‖ŷ, ‖x‖ > ‖y‖,ŷ, x̂ ∈ ∂B, (89)

�− ω
c
(x, y) = �+ ω

c
(x, y) = −i

ω

c

1∑
σ=0

+∞∑
l=σ

l∑
m=σ

hl

(ω
c

‖x‖
)

jl
(ω

c
‖y‖

)
Yσ , l, m(x̂)Yσ , l, m(ŷ),

x = ‖x‖x̂, y = ‖y‖ŷ, ‖x‖ > ‖y‖, ŷ, x̂ ∈ ∂B, (90)

where hl(z), jl(z), l = 0, 1, . . ., are the spherical Hankel and Bessel functions, respectively (see [12, p.
76–79]), hl, �+ ω

c
are the complex conjugates of hl and �+ ω

c
, respectively, and h′

l(z), l = 0, 1, . . . are the
derivatives with respect to z of the function hl(z), l = 0, 1, . . ..

Let us define the following quantities:

dω,l = −iωhl

(ω
c

)
− χωh′

l

(ω
c

)
, l = 0, 1, . . . , ω ∈ IR, (91)

and

rω,l = −|dω,l|2 − λIK(ω)

µ
(1 + χ)2(1 + ε)2hl

(
(1 + ε)

ω

c

)
hl

(ω
c

)
, l=0, 1, . . . , ω ∈ IR, (92)

for (ω,α) ∈ WN1,N2 ; we denote by zs,ω,α,σ ,l,m, z∗
s,ω,α,σ ,l,m, σ = 0, 1, l = σ , σ + 1, . . . , m = σ , σ + 1, . . . , l

the generalized Fourier coefficients of the functions zs,ω,α and z∗
s,ω,α , s = 0, 1, . . . defined in (87), (88)

respectively, that is:

zs,ω,α,σ ,l,m =
∫
∂B

Yσ , l, m(x̂)zs,ω,α(x̂)ds∂B(x̂),

z∗
s,ω,α,σ ,l,m =

∫
∂B

Yσ , l, m(x̂)z
∗
s,ω,α(x̂)ds∂B(x̂),

(ω,α) ∈ WN1, N2 , s = 0, 1, . . . , σ = 0, 1, l = σ , σ + 1, . . . , m = σ , σ + 1, . . . , l.

(93)
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For (ω,α) ∈ WN1,N2 , using the basis of the spherical harmonic functions from (65), (63), (89) and (90), we
obtain:

Uω,α(‖x‖x̂)=
1∑

σ=0

+∞∑
l=σ

l∑
m=σ

ũ∗
ω,α,σ ,l,mhl

(
ω‖x‖

c

)
Yσ , l, m(x̂), ‖x‖ > a, x̂ ∈ ∂B, (ω,α) ∈ WN1,N2 , (94)

Vω,α(‖x‖x̂)=
1∑

σ=0

+∞∑
l=σ

l∑
m=σ

ṽ∗
ω,α,σ ,l,mhl

(
ω‖x‖

c

)
Yσ , l, m(x̂), ‖x‖ > a, x̂ ∈ ∂B, (ω,α) ∈ WN1,N2 , (95)

where ũ∗
ω,α,σ ,l,m, ṽ∗

ω,α,σ ,l,m, σ = 0, 1, l = σ , σ + 1, . . . , m = σ , σ + 1, . . . , l, s = 0, 1, . . . are the generalized
Fourier coefficients of the functions Uω,α(x̂), Vω,α(x̂), x̂ ∈ ∂B. From formulae (94), (95) and (81), (82), we
obtain:

ũ∗
ω,α,σ ,l,m =

+∞∑
s=0

a2
∫
∂B

ds∂B(x̂)Yσ , l, m(x̂)
∫
∂B

ds∂B(ŷ)�+ ω
c
(x̂, aŷ)ũs,ω,α(ŷ)

=
+∞∑
s=0

i
(ω

c

)
hl

(ω
c

)
jl

(aω
c

)
a2

∫
∂B

ds∂B(ŷ)Yσ , l, m(ŷ)ũs,ω,α(ŷ),

(ω,α) ∈ WN1,N2 , σ = 0, 1, l = σ , σ + 1, . . . , m = σ , σ + 1, . . . , l, (96)

and

ṽ∗
ω,α,σ ,l,m =

+∞∑
s=0

a2
∫
∂B

ds∂B(x̂)Yσ , l, m(x̂)
∫
∂B

ds∂B(ŷ)�− ω
c
(x̂, aŷ)ṽs,ω,α(ŷ)

= −
+∞∑
s=0

i
(ω

c

)
hl

(ω
c

)
jl

(aω
c

)
a2

∫
∂B

ds∂B(ŷ)Yσ , l, m(ŷ)ṽs,ω,α(ŷ),

(ω,α) ∈ WN1,N2 , σ = 0, 1, l = σ , σ + 1, . . . , m = σ , σ + 1, . . . , l. (97)

Using formulae (89) and (90) and Equations (83), (84), we obtain the quantities:
jl(aω/c)a2 ∫

∂B ds∂B(ŷ)Yσ , l, m(ŷ)ũs,ω,α(ŷ) and jl(aω/c)a2 ∫
∂B ds∂B(ŷ)Yσ , l, m(ŷ)ṽs,ω,α(ŷ), (ω,α) ∈ WN1, N2 , s =

0, 1, . . ., σ = 0, 1, l = σ , σ + 1, . . ., m = σ , σ + 1, . . . , l and we derive the following expressions for the
coefficients ũ∗

ω,α,σ ,l,m, ṽ∗
ω,α,σ ,l,m, (ω,α) ∈ WN1, N2 , σ = 0, 1, l = σ , σ + 1, . . ., m = σ , σ + 1, . . . , l:

ũ∗
ω,α,σ ,l,m =

+∞∑
s=0

−dω,lzs,ω,α,σ ,l,m+(1+χ)hl(
ω
c )z

∗
s,ω,α,σ ,l,m/(2µ)

rω,l
,

(ω,α) ∈ WN1, N2 , σ = 0, 1, l = σ , σ + 1, . . . , m = σ , σ + 1, . . . , l, (98)

ṽ∗
ω,α,σ ,l,m =

+∞∑
s=0

dω,lz∗
s,ω,α,σ ,l,m + 2λIK(ω)(1 + χ)(1 + ε)2hl(

ω
c (1 + ε))zs,ω,α,σ ,l,m

rω,l

(ω,α) ∈ WN1, N2 , σ = 0, 1, l = σ , σ + 1, . . . , m = σ , σ + 1, . . . , l. (99)

We conclude this section by noting that the computation of the coefficients ũ∗
ω,α,σ ,l,m, ṽ∗

ω,α,σ ,l,m, (ω,α) ∈
WN1, N2 , σ = 0, 1, l = σ , σ + 1, . . ., m = σ , σ + 1, . . . , l is highly parallelizable since it requires the com-
putation of the integrals contained in formula (93). Each integral is independent from the others, and
the computation can be carried out in parallel. Furthermore, each of these integrals can be computed in
parallel; in fact, the integrals are approximated by Riemann sums and the computation of Riemann sums
is easily parallelizable.
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4 Numerical results

In this section, we present numerical results obtained on test problems with a parallel implementation of
the numerical methods introduced in Section 3. The codes have been written in Fortran 77 using MPI for
message passing, and were tested on an SP4 machine with 512 processors of the Cineca (Casalecchio di
Reno, BO), Italy computer center.

We validate the mathematical models and the numerical methods presented in the previous sections
for two test problems: the first one relates to the definite-band furtivity problem, and the second relates
to the definite-band ghost-obstacle problem. The results obtained are discussed both from a quantitative
and a qualitative point of view. In the numerical experiments, we denote by us

a the wave scattered by the
smart obstacle (i.e., the active obstacle) and by us

p the wave scattered by the passive obstacle. Moreover,
we provide a quantitative basis to the attempt made by the smart obstacle to hide its real nature (shape,
impedance, location) through the performance indices iF,K, ĩF,K, ĭF,K, relative to the furtivity problem, and

iG,K, ĩG,K, ĭG,K, relative to the ghost-obstacle problem, defined later.
The results contained in the tables and in the figures of this section show that the definite-band fur-

tivity problem is “easier” than the definite-band ghost-obstacle problem. In fact, for given values of λ,
µ, ς and for a given set K the solution of the control problems proposed gives more satisfactory results
(i.e., iF,K > iG,K) in the case of the definite-band furtivity problem than in the case of the definite-band
ghost-obstacle problem. Furthermore, the cost paid in terms of the control variable ψ (i.e., the quantity∫
IR dt

∫
∂�

ds∂�(x)ψ2(x, t) see (9)) to obtain the same value of iF,K and of iG,K is higher for iG,K, that is, when
we solve the definite-band ghost-obstacle problem, than for iF,K, that is, when we solve the definite-band
furtivity problem. Another observed phenomenon is that, in both problems (definite-band furtivity and
definite-band ghost-obstacle), when we increase the “size” of the band K (i.e., when we consider a new
band K1 ⊃ K), we spend more in terms of ψ as shown in Tables 1, 3. Finally we show the quantitative
character of the series expansions (94), (95) relative to the definite-band ghost-obstacle problem. A similar
study to establish the quantitative character of the analogous series expansion relative to the furtivity
problem (i.e., K = IR) can be found in [1].

Table 1 Experiment 1: double cone, χ = 0, incident wave (100) with q = 1

K iF,K ĩF,K Cψ ,K ĩF,K/Cψ ,K ĭ
F,IR\K

λ = 0·5, µ = 0·5, ς = 1
(−0·5, 0·5) 0·9433942 0·9444603 0·113029 8·3559 9·937×10−9

(−1, 1) 0·736758 0·76687 0·5154179 1·48786 9·970 × 10−9

(−1·5, 1·5) 0·595999 0·671255 0·54696733 1·22723 3·073×10−8

(−2, 2) 0·5081838 0·608074 0·5263606 1·155242 3·155×10−8

(−2·5, 2·5) 0·5324 0·577030 0·50925527 1·13308 3·975×10−8

(−3, 3) 0·54551901 0·5667251 0·4979747 1·13806 4·199×10−8

(−4, 4) 0·548331 0·5663212 0·49589065 1·1420 7·005×10−8

IR 0·549079 0·5663196 0·49581666 1·1421 0

λ = 0·9, µ = 0·1, ς = 1
(−0·5, 0·5) 0·993152 0·9932864 0·1228035 8·088421 9·937×10−9

(−1, 1) 0·954775 0·96055673 0·7206326 1·325 9·970×10−9

(−1·5, 1·5) 0·9119264 0·93127934 0·84401163 1·029548 3·073×10−8

(−2, 2) 0·8691442 0·90347241 0·877712203 1·029349 3·155×10−8

(−2·5, 2·5) 0·862403269 0·88381619 0·858445068 1·029548 3·975×10−8

(−3, 3) 0·864009748 0·872720453 0·81426169 1·0717936 4·199×10−8

(−4, 4) 0·861688 0·8715459 0·7979112102 1·0922843 7·005×10−8

IR 0·86113615 0·8715627 0·7968449 1·0937671 0
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Table 2 Experiment 1: double cone, χ = 0, incident wave (100) with q = 2

K iF,K ĩF,K Cψ ,K ĩF,K/Cψ ,K ĭ
F,IR\K

λ = 0·5,µ = 0·5, ς = 1
(−1, 1) 0·809381 0·8229476 848·5246 9·699×10−4 9·52406×10−8

(−2, 2) 0·228168 0·50047 3209·559 1·559×10−4 6·1104242×10−8

(−3, 3) 0·295004 0·411742 3961·48 1·042×10−4 6·70722×10−8

(−4, 4) 0·340357 0·397362 4469·48 8·890×10−5 6·237531×10−8

λ = 0·9, µ = 0·1, ς = 1
(−1, 1) 0·971426 0·973760 1124·7696 8·657×10−4 9·52406×10−8

(−2, 2) 0·738203 0·855474 7292·7085 1·173×10−4 6·1104242×10−8

(−3, 3) 0·683465 0·776248 10822·7369 7·172×10−5 6·70722×10−8

(−4, 4) 0·704218 0·739362 13890·872 5·323×10−5 6·237531×10−8

Table 3 Convergence of the series expansions (94) and (95)

ω
c ε1

us ε2
us ε3

us ε4
us ε5

us ε6
us ε7

us ε8
us

1·0 2·38×10−2 4·45×10−4 4·56×10−2 2·69×10−3 1·04×10−4 2·13×10−3 2·04×10−4 1·18×10−5

2·0 2·40×10−2 9·42×10−4 4·56×10−2 3·06×10−3 1·88×10−4 2·14×10−3 2·46×10−4 2·10×10−5

3·0 2·41×10−2 1·42×10−3 4·558×10−2 3·57×10−3 2·93×10−3 2·15×10−3 3·03×10−4 3·36×10−5

ω
c ε1

ϕ ε2
ϕ ε3

ϕ ε4
ϕ ε5

ϕ ε6
ϕ ε7

ϕ ε8
ϕ

1·0 4·88×10−2 2·64×10−3 2·57×10−2 2·97×10−3 2·06×10−4 1·19×10−3 1·82×10−4 1·57×10−5

2·0 5·07×10−2 1·34×10−3 1·72×10−2 1·41×10−3 9·55×10−5 8·03×10−4 1·01×10−4 8·89×10−5

3·0 5·69×10−2 5·68×10−3 2·08×10−2 3·67×10−3 4·32×10−4 9·84×10−4 2·29×10−4 3·31×10−5

In the two experiments proposed here, we consider an incoming acoustic field of the following form:

ui(x, t) = e−q2[(γ , x)−ct]2
, (x, t) ∈ IR3 × IR, (100)

where γ ∈ ∂B, q is a positive constant and c is the wave-propagation velocity. In the numerical experiments,
we always choose c and ς equal to one. Note that, owing to the choice (100) of the incident field, the approx-
imation of ui, us and ϕ with time-harmonic waves given in (51), (52) and (53) can be done by choosing:
N2 = 1, α1 = γ and ai,1, ωi/(2qc), i = 1, 2, . . . , N1 as the weights and the nodes of the Gauss–Hermite
quadrature rule. In the numerical experiments discussed here we choose N1 = 400. The motivation of this
choice can be found in [11, Eq. (89)]. Finally, we denote by ULmax,S

ω,α and VLmax,S
ω,α the approximations of Uω,α

and Vω,α obtained by truncating the series expansions in (94), (95) at l = Lmax and the series expansion in
(98), (99) at s = S, that is,

ULmax,S
ω,α (‖x‖x̂) =

1∑
σ=0

Lmax∑
l=σ

l∑
m=σ

ũ∗,S
ω,α,σ ,l,mhl

(
ω‖x‖

c

)
Yσ , l, m(x̂), ‖x‖ > a, x̂ ∈ ∂B, (101)

VLmax,S
ω,α (‖x‖x̂) =

1∑
σ=0

Lmax∑
l=σ

l∑
m=σ

ṽS,∗
ω,α,σ ,l,mhl

(
ω‖x‖

c

)
Yσ , l, m(x̂), ‖x‖ > a, x̂ ∈ ∂B, (102)

and with us
a,Lmax,S, ϕLmax,S the approximations of us

a and ϕ obtained using (101) and (102) in Eqs. (52)
and (53), respectively. Using formulae similar to (101) and (52) (see [11]) we can approximate us

p and
us

G with us
p,Lmax,S and us

G,Lmax,S. In the numerical experiments discussed here, we choose Lmax = 16 in all
experiments, and S ranging between 1 and 8. A detailed discussion on the appropriate way of choosing
these parameters can be found in [1, 11].
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We now describe the definite-band furtivity experiment. The obstacle (�;χ) is chosen to be an acousti-
cally soft double cone. We recall that acoustically soft obstacles correspond to the choice χ = 0. A double
cone consists of two cones with a circular basis of radius 1·2 of the same height equal to 1 · 2 placed upon
one another with common bases contained in the plane x3 = 0 and centered in the origin (see Fig. 1a)).
We choose an incident wave of the form (100) having γ = (0, 0, −1)T and q = 1 (in Table 1) or q = 2 (in
Table 2) and we choose S = 4.

Let us introduce the quantity iF,K . Let tν = 0·2(ν−1), ν = 1, 2, . . . , 10 be 10 times and ∂BRi , ri = 1·5+0·5 i,
i = 1, 2, . . . , 5 be 5 spheres on which we want to compute the scattered fields us

a,Lmax,S, us
p,Lmax,S. We define

for ν = 1, 2, . . . , 10 and i = 1, 2, . . . , 5 the following quantities:

εa
F,K,i(tν) =

∫
∂BRi

∣∣∣∣
∫
IR

dτ ǏK(τ )us
a,Lmax,S(x, tν − τ)

∣∣∣∣
2

ds∂BRi
(x), (103)

ε
p
F,K,i(tν) =

∫
∂BRi

∣∣∣∣
∫
IR

dτ ǏK(τ )us
p,Lmax,S(x, tν − τ)

∣∣∣∣
2

ds∂BRi
(x), (104)

(a)

(b) (c)

Fig. 1 Obstacles of the furtivity (a) and ghost-obstacle problem (b), (c)
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and finally we define

iF,K = min
ν = 1, 2, . . . , 10,

i = 1, 2, . . . , 5

|εp
F,K,i(tν)−εa

F,K,i(tν)|
ε

p
F,K,i(tν)

. (105)

ĩF,K = 1
50

10∑
ν=1

5∑
i=1

{ |εp
F,K,i(tν)− εa

F,K,i(tν)|
ε

p
F,K,i(tν)

}
. (106)

The quantity iF,K measures the worst furtivity effect observed at times tν , ν = 1, 2, . . . , 10 on the spheres
∂BRi , i = 1, 2, . . . , 5, while the quantity ĩF,K measures a mean behavior of the furtivity effect under the

same circumstances. Note that, when the convolution with respect to the time variable of ǏK and us
a,Lmax,S,

denoted by ǏK ∗ us
a,Lmax,S as done in (62), is equal to zero, that is, when the smart obstacle is completely

undetectable in the frequency band K, the values of iF,K and ĩF,K will be equal to one. Similarly, when

ǏK ∗ us
a,Lmax,S = ǏK ∗ us

p,Lmax,S, that is when there is no attempt to be furtive in the frequency band K, we

have iF,K and ĩF,K equal to zero. Hence, values of iF,K and of ĩF,K close to unity indicate a satisfactory
furtivity effect on the set K.

Finally, we denote by ĭF,IR\K the quantity obtained from formulae (103)–(105) when we replace K with
IR\K and min with max. This last quantity measures the best furtivity effect obtained outside the frequency
band K. As shown in Table 1, this effect is almost equal to zero. Furthermore, we denote by Cψ ,K the
quantity defined by

Cψ ,K =
√√√√ 1

10

10∑
ν=1

∫
∂�

∣∣∣∣ 1
2µ
ϕLmax,S(x, tν)

∣∣∣∣
2

ds∂�(x). (107)

The quantity Cψ ,K measures the cost of minimization of the cost functional paid in terms of the control
variable ψ . In fact, ϕLmax,S(x, t) approximates ϕ̃(x, t), and the relation between ϕ̃ and ψ̃ is given by (28).
Recall that we have chosen ς = 1.

Table 1 shows the behavior of iF,K, ĩF,K, Cψ and ĭIR\K for several choices of the set K and for two choices
of the parameter λ. Several conclusions can be drawn and confirmed by the second experiment concerning
the definite-band ghost-obstacle problem (see Table 3). First, as expected, when λ increases, the furtivity
effect in the worst case, measured by iF,K, or in the mean case, measured by ĩF,K, increases. In fact, when
λ = 0·5, the worst furtivity effect is about 50%, and when λ = 0·9 it is about 86%. Furthermore, in general,
we observe that, if we fix the value of λ when the “size” of the set K increases, the mean furtivity effect
ĩF,K decreases and the cost in terms of ψ paid to have a given furtivity effect, that is, for a fixed value of

ĩF,K, increases. In fact, the ratio ĩF,K/Cψ ,K gives the furtivity effect at unit cost in terms of ψ that we must
pay; when K increases in size, the furtivity effect at unit cost in terms of ψ decreases. For example, when
λ = 0·5, we can see that passing from K = (−0·5, 0·5) to K = (−2, 2) the cost paid in terms of ψ increases
by a factor of about 8 (see the behavior of the ratio ĩF,K/Cψ ,K). We note that, when the set K passes from
(−2·5, 2·5) to (−4, 4), the furtivity effect remains substantially unchanged. This is probably due to the main
part of the Fourier transform of the incoming field having support contained in (−2·5, 2·5), so that passing
from K = (−2·5, 2·5) to K = (−4, 4) does not change substantially the problem considered. In order to
investigate this behavior, we show in Table 2 results obtained under the circumstances of the experiment
shown in Table 1, when the incoming wave is of the form given in (100) with q = 2.

Table 2 shows that the quantity ĩF,K increases when the size of K decreases. Furthermore, in this case (i.e.,
q = 2) the cost measured by Cψ ,K to be paid for solving the control problem is much higher than the cost
to be paid in the case q = 1. This is reasonable since, when q increases, the associated scattering problem
becomes more difficult. In fact, in this case the relevance of high frequencies in the Fourier transform of
the incident wave as a consequence of the scattered waves increases.
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Fig. 2 The setting of the
ghost-obstacle problem.
The sphere is the smart
obstacle, and the cube is
the ghost obstacle

We now describe the second experiment concerning the definite-band ghost-obstacle problem. The
obstacle (�;χ) is a sphere with center in the origin and radius R = 1·02 withχ = 1 (see Figure 1 c). The ghost
(�G;χG) consists of a cube with χG = 1. The center of mass of the cube is the point x∗ = (1·8, 0, 0)T ∈ IR3,
the largest sphere contained in the cube has a radius equal to 0·65, and the facets of the cube are parallel to
the Cartesian coordinate planes (see Fig. 1 b)). Figure 2 shows (�;χ) and (�G;χG) together. Remember
that, in the scattering phenomena studied here, � and �G are not present together in IR3, as shown Fig. 2.
In fact, �G is only a “ghost”.

First, we show the quantitative character of the series expansion. We have chosen λ = 0·999, ε = 1·7
and the incident wave as in formula (100) with γ = (1, 0, 0)T , q = 1 and S = 5.

Figures 3 and 4 show the wave scattered by the active obstacle us
a on the surface of the sphere with center

at the origin and radius 3, i.e., on ∂B3, when the optimal-control input is used, along with the wave scattered
by the passive obstacle us

p, and the wave scattered by the ghost us
G. Note that �ε = B2·7, so that �ε ⊂ B3.

We have represented the convolution of us
a, us

p, us
G with ǏK (Fig. 3) and with ǏIR\K (Fig. 4), respectively, in a

color map for three values of the time variable t, that is, t = 1, t = 3·5 and t = 5·5. We have chosen these three
values of t since they characterize three different situations that distinguish the passive and the smart obsta-
cle. Note that the incident acoustic wave packet comes from the negative x1-axis and hits first� and later�G
if we think of the ghost�G as a real scatterer. That is, the passive obstacle must react before the ghost obsta-
cle. In fact, when t = 1, the passive obstacle generates a measurable scattered wave, while the ghost obstacle
does not irradiate substantial energy. When t = 3·5, the situation is reversed since the incoming field has left
the passive obstacle but its tail is still touching the ghost obstacle (if we think of the ghost as a real scatterer).

The first qualitative result shown in Figs. 3 and 4 shows the effect produced by the solution of the opti-
mal-control problem (1), (4)–(6), (10). In fact, in Fig. 3 we can see that ǏK ∗ us

a (see column 2) resembles
ǏK ∗ us

G (see column 3), and we can also see how different the field ǏK ∗ us
p (see column 1) is from ǏK ∗ us

a
(see column 2). That is, on the surface ∂B3, the field generated by the smart obstacle resembles the field
generated by the ghost obstacle on the band K, this is, the definite-band ghost-obstacle effect. In Fig. 4,
columns 1 and 2 are similar and different from column 3. That is, in Fig. 4 we can see that, outside the band
K, the active obstacle reacts as the passive obstacle: there is no ghost effect.

We now show the quantitative character of the series expansions (94) and (95). The obstacle (�;χ) and
the ghost obstacle (�G;χG) and the other parameters defining the experiment are same as those chosen in
the second experiment. We show the quantitative character of the series expansions defining ũ∗

ω,α,σ ,l,m and
ṽ∗
ω,α,σ ,l,m in (96) and (97). Let us denote by ũS,ω,α,σ ,l,m and ṽ∗

S,ω,α,σ ,l,m the series expansions given in (96)
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Fig. 3 Comparison on the definite band K at three different time values of the field scattered by the passive obstacle (column
1), by the active obstacle (column 2) and by the ghost obstacle (column 3)

and (97), respectively, truncated at s = S, and let us define the following quantities:

εS
us=

[∑1
σ=0

∑Lmax
l=σ

∑l
m=σ |ũS,ω,γ ,σ ,l,m|2

]1/2

∑1
σ=0

∑Lmax
l=σ

[∑l
m=σ | ∑S

s=0 ũs,ω,γ ,σ ,l,m|2
]1/2

, (108)

and

εS
ϕ=

[∑1
σ=0

∑Lmax
l=σ

∑l
m=σ |ṽ∗

S,ω,γ ,σ ,l,m|2
]1/2

[∑1
σ=0

∑Lmax
l=σ

∑l
m=σ | ∑S

s=0 ṽ∗
s,ω,γ ,σ ,l,m|2

]1/2
. (109)

In Table 3, we show the behavior of εS
us

, εS
ϕ when S = 1, 2, . . . , 8, Lmax = 16 andω/c = 0·5, 1, 2, 3, λ = 0·999,

µ = 0·001, K = (−3, 3). Table 3 shows that the formal series expansions in powers of (ω/c)(ξ − 1) used in
this experiment are numerically convergent when (ω/c)maxx̂∈∂B |ξ(x̂)−1| is not large. A detailed discussion
of the convergence of such series expansions can be found in [1].

We conclude this section by showing Table 4, which is similar to Table 1 but pertains to the definite-band
ghost-obstacle problem. Let tν = 1 + 0·5(ν − 1), ν = 1, 2, . . . , 10 and Ri = 3 + 0·5(i − 1), i = 1, 2, . . . , 5, we
introduce three quantities analogous to iF,K, ĩF,K and ĭF,K that we denote by iG,K, ĩG,K, ĭG,K. Let us

a be the
wave scattered by the smart-obstacle solution of the optimal-control problem (1), (4)–(6), (10). We define
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Fig. 4 Comparison of the field scattered by the passive obstacle (column 1), by the active obstacle (column 2) and by the
ghost obstacle (column 3) outside the definite band K at three different time values

Table 4 Experiment 2: � = B1·02, χ = 1, �G= cube (see Figs. 1b and 2) χG = 1, incident wave (100) with q = 1

K iG,K ĩG,K Cψ ,K ĩG,K/Cψ ,K ĭ
G,IR\K

λ = 0 · 5,µ = 0 · 5, ς = 1
(−0 · 5, 0 · 5) 0·527656 0·59577 3·96336×10−2 15·0379 4·0311×10−8

(−1, 1) 0·42748 0·48462 0·31894 1·51947 2·06139×10−8

(−3, 3) 2·7960×10−2 0·29143 0·771074 0·37795 2·06159×10−8

IR 3·8218×10−2 0·29827 0·77377 0·385476 0

λ = 0 · 999,µ = 0 · 001, ς = 1
(−0 · 5, 0 · 5) 0·606725 0·70988 5·81541 1·2207×10−1 4·0311×10−8

(−1, 1) 0·617477 0·66329 41·9809 1·5710×10−2 2·06139×10−8

(−3, 3) 0·440303 0·64878 69·1558 9·3814×10−3 2·06159×10−8

IR 0·418560 0·65770 69·2068 9·5034×10−3 0
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Table 5 CPU time versus
number of processors

Processors Seconds

8 692·09
16 309·68
32 186·10
64 107·19

128 54·25

for ν = 1, 2, . . . , 10 and i = 1, 2, . . . , 5 the following quantities:

εa
G,K,i(tν) =

∫
∂BRi

∣∣∣∣
∫
IR

dτ ǏK(τ )
(

us
a,Lmax

(x, tν − τ)− us
G,Lmax

(x, tν − τ)
)∣∣∣∣

2

ds∂BRi
(x), (110)

ε
p
G,K,i(tν) =

∫
∂BRi

∣∣∣∣
∫
IR

dτ ǏK(τ )
(

us
p,Lmax

(x, tν − τ)− us
G,Lmax

(x, tν − τ)
)∣∣∣∣

2

ds∂BRi
(x), (111)

and finally

iG,K = min
ν = 1, 2, . . . , 10,

i = 1, 2, . . . , 5

|εp
G,K,i(tν)− εa

G,K,i(tν)|
ε

p
G,K,i(tν)

, (112)

ĩG,K = 1
50

10∑
ν=1

5∑
i=1

{ |εp
G,K,i(tν)− εa

G,K,i(tν)|
ε

p
G,K,i(tν)

}
. (113)

Table 4 shows the behavior of these quantities for S = 5, q = 1. The results shown in Table 4 confirm
the analysis made previously for the definite-band furtivity problem.

Table 5 shows the execution time required to compute (once) the quantities
∑S

s=0 ũs,ω,γ ,σ ,l,m and the

quantities
∑S

s=0 ṽ∗
s,ω,γ ,σ ,l,m,ω = ωi, i = 1, 2, . . . , N1, σ = 0, 1, l = σ , σ+1, . . . , Lmax, m = σ , σ+1, . . . , l. Note

that re-summing these quantities as in (94), (95), and (52), (53) we can compute the approximations to the
solutions us

a and ϕ of the optimal-control problem (1), (4–6), (10) in every point (x, t) ∈ (IR3 \�)× IR. We
recall that we have chosen S = 5, N1 = 400, Lmax = 16 and K = (−3, 3). The execution time is measured
using the function MPI− WTIME() that returns a floating-point number representing the elapsed wall-clock
time since some chosen time in the past measured in seconds.

We note that passing from 8 to 32 processors, the time is reduced by a factor of about 3·72, so that the
speed-up factor is 3·72/4 = 0·93. Similarly, going from 8 to 64 processors, the speed up factor is 6·46/8 ≈ 0·80
and going from 8 to 128 is 12·75/16 ≈ 0·79. This speed-up is really impressive.

5 Conclusions

In this paper we have studied smart obstacles that pursue the goal of being undetectable or of appearing
in a location different from their actual location when hit by an incoming time-dependent wave composed
of time-harmonic components with frequencies in a given band. We modeled the direct scattering prob-
lems involving these smart obstacles as optimal-control problems for the wave equation (see (1), (4)–(6),
(10)), and we derived the first-order optimality condition (15)–(24) associated with these control problems
using the Pontryagin maximum principle. Finally, we developed a highly parallelizable numerical method
to solve the equation set (15)–(24). The most usual numerical solvers for optimal-control problems for
systems described by partial differential equations are iterative schemes that require the solution of one or



412 J Eng Math (2006) 56:385–413

several direct problems, that is, problems involving the partial differential equations, at each iteration. The
method proposed here is not iterative and obtains the solution of the optimal-control problem (1), (4)–(6),
(10) solving the exterior problem defined by equations (15)–(24). This means solving only one problem
involving partial differential equations. The exterior problem (15)–(24) can be solved efficiently using the
operator-expansion method. In fact, proceeding as in [1, 11], we can reduce the solution of this exterior
problem to the solution of a set of systems of integral equations (66), (67). When simple obstacles and
incident waves of sufficiently low frequency are considered, these equations can be solved using spherical
harmonic functions to represent the data, the integral kernels and the unknown densities. In particular,
owing to the use of the expansions (75), (76), the solution of the systems of integral equations (66), (67)
is reduced to the solution of diagonal systems of linear equations. The method proposed here is very well
suited for parallel computing; in fact, the most demanding part of the computation, which is the compu-
tation of the coefficients of the expansions in spherical harmonic functions of the data and of the integral
kernels, can be done in parallel giving an impressive speed-up factor. The main restriction of the proposed
method is that the shape of the obstacles must be simple, that is, not too far from being spherical and
that the incident time-harmonic waves must have a sufficiently low frequency. This restriction is necessary
since we want to use a sphere with its center in the origin and radius one as base point of the expansions
(75), (76) and the spherical harmonic functions as basis to represent the data and the unknowns of the
integral equations. Work is in progress to overcome this restriction by introducing new base points for the
expansions (75), (76) and new function bases to discretize the integral equations coming from the new
expansions. The function bases must be able to discretize the integral equations obtained from the expan-
sions with linear systems similar to diagonal systems, that is, systems with a very sparse coefficient matrix.
We can conclude that the mathematical models proposed to study the scattering problems involving smart
obstacles are valid and that the numerical method we proposed to solve these models is a valuable tool in
the quantitative solution of scattering problems involving smart obstacles.
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